5.1: Graphing Linear Inequalities

The goal of the next two sections is to begin solving linear programming problems with two unknowns. We use inequalities to describe the constraints in a problem, such as limitations on resources.

Inequalities and Manipulations.

- (a) $a \le b$ ($a \ge b$) means that a is less (greater) than or equal to b.
- (b) a < b (a > b) means that a is strictly less (greater) than b.
- (c) The same quantity can be added to or subtracted from both sides of an inequality, just as in the equality case.
- (d) The same *positive* quantity can be multiplied or divided from both sides of an inequality, just as in the equality case.
- (e) The same *negative* quantity can be multiplied or divided from both sides of an inequality, but the inequality must be reversed.
- (f) If $a \leq b$, a is less than or equal to b, then $b \geq a$, b is greater than or equal to a.

Example 1.

- (a) $0 \le 1, -2 \le -2, 99 \ge 3, e \le \pi$, etc.
- (b) 0 < 1, 99 > 3, and $e < \pi$, but -2 is not strictly less than -2.
- (c) If $x \leq y$ then $x 4 \leq y 4$.
- (d) If $x \leq y$ then $3x \leq 3y$.
- (e) If $x \leq y$ then $-3x \geq -3y$.
- (f) If $3x + 6 \le 5y$ then $5y \ge 3x + 6$.

Solving Linear Inequalities. A linear inequality is simply an linear equation where the equals sign (=) is replaced by an inequality sign ($\leq ,\geq, <$, or >.) Some examples in one, two, three, and four variables are

$$ax \le b(\operatorname{or} ax \ge b)$$

$$ax + by \le c(\operatorname{or} ax + by \ge c)$$

$$ax + by + cz \le d(\operatorname{or} ax + by + cz \ge d)$$

$$ax + by + cz + dw \le e(\operatorname{or} ax + by + cz + dw \ge e),$$

where a, b, c, d, and e are real constants.

Example 2. Solve the following inequalities in one variable.

- (a) $2x + 8 \ge 89$
- (b) $8 4x \le 40$
- (c) $2x + 8 \le 2 4x$

Example 3. Use the provided graph paper to sketch the region represented by the following linear inequalities in one or two variables. Put one inequality on each graph.

- (a) $3x 2y \le 6$
- (b) $6x \le 12 + 4y$
- (c) $x \le -1$
- (d) $y \ge 0$
- (e) $x \ge 3y$

Example 4. Use the provided graph paper to sketch the region represented by the following systems of linear inequality. Put one system on each graph and clearly indicate the intersection points.

- (a) $2x 5y \le 10, x + 2y \le 8$
- (b) $3x 2y \le 6, x + y \ge 6, y \le 4$
- (c) $2x + 4y \ge 12, x \le 5, y \le 3, x \ge 0, y \ge 0$

Example 5. Socaccio Pistachio Inc. makes two types of pistachio nut: Dazzling Red and Organic. Pistachio nuts require food color and salt, and the following table shows the amount of food color and salt required for a 1kilogram batch of pistachios, as well as the total amount of these ingredients available each day.

	Dazzling Red	Organic	Total Available
Food Color (g)	2	1	20
Salt (g)	10	20	220

Use a graph to show the possible numbers of batches of each type of pistachio Socaccio can produce a day. This region (the solution set of a system of inequalities) is called the feasible region.